Quad SPST CMOS Analog Switches

General Description

The DG201A and DG211 are normally closed, quad single-pole single-throw (SPST) analog switches. These CMOS switches can be continuously operated with power supplies ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Maxim guarantees that these switches will not latch up if the power supplies are disconnected with input signals still connected.

Both devices have guaranteed break-before-make switching. The DG201A differs from the DG211 primarily in switching speeds. The DG201A has a maximum turn-off time of 450 ns and a maximum turn-on time of 600ns. The DG211 has a maximum turn-off time of 500 ns and a maximum turn-on time of 1000 ns.
Compared to the original manufacturer's products, Maxim's DG201A and DG211 consume significantly lower power making them better suited for portable applications. Maxim has also eliminated the need for the third $\left(V_{L}\right)$ power supply that is required for the operation of the original manufacturer's DG211.

Applications

Winchester Disk Drives
Test Equipment
Communications Systems
PBX, PABX
Guidance and Control Systems
Head Up Displays
Military Radios

Pin Configurations continued at end of data sheet.
Typical Operating Circuit

PROGRAMMABLE GAIN AMPLIFIER
NOTE: *PINS 1, 8, 9, AND 16 ARE LOGIC CONTROL INPUTS

Features

- Guaranteed $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Operation
- No VL Supply Required
- Nonlatching with Supplies Turned Off and Input Signals Present
- CMOS and TTL Logic Compatible
- Monolithic, Low-Power CMOS Design

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG201ACUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
DG201ACSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 SO
DG201ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
DG201C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG201AEGE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN (5×5)
DG201AEUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
DG201ADY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
DG201ADJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
DG201AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
DG201ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
DG211CUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
DG211CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 SO
DG211CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
DG211C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG211EGE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN (5×5)
DG211EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
DG211DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
DG211DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP

Pin Configurations

LOGIC	SWITCH
0	ON
1	OFF

Quad SPST CMOS Analog Switches

```
ABSOLUTE MAXIMUM RATINGS (DG211)
V+ to V-................................................................44V
VIN to Ground.......................................................V-, V+
VL to Ground.
.............................................-0.3V, 25V
VS or VD to V+......................................................0, -40V
VS or VD to V-......................................................0, 40V
V+ to Ground..................................................................25V
V- to Ground...........................................................-25V
Current, Any Terminal Except S or D.............................30mA
Continuous Current, S or D.................................................mA
Peak Current, S or D
    (pulsed at 1ms 10% duty cycle max)
    ..........................70mA
```

 Storage Temperature Range......................... \(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
 Operating Temperature Range
DG211C
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DG211D/E ... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) (Note 1)
16-Pin Plastic Dip (derate $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .. 842 mW
16 -Pin Narrow SO (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 696 mW
16-Pin TSSOP (derate $9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 755 mW
16 -Pin QFN (5×5)
(derate $19.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......................... 1538 mW

Note 1: Device mounted with all leads soldered to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (DG211)

($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (For more information on TYP values see Note 2.)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
SWITCH							
Analog Signal Range	Vanalog			-15		15	V
Drain-Source ON-Resistance	RDS (ON)	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V} / \mathrm{N}=0.8 \mathrm{~V}, \mathrm{IS}=1 \mathrm{~mA}$			115	175	Ω
Source OFF-Leakage Current	IS (OFF)	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.01	5.0	nA
			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-5.0	-0.02		
Drain OFF-Leakage Current	ID (OFF)	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.01	5.0	
			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-5.0	-0.02		
Drain ON-Leakage Current (Note 3)	l (ON)	V IN $=0.8 \mathrm{~V}$	$V_{S}=V_{D}=-14 \mathrm{~V}$		0.1	5.0	
			$V_{S}=V_{D}=-14 \mathrm{~V}$	-5.0	-0.15		
INPUT							
Input Current with Input Voltage High	IINH	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-1.0	-0.0004		$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$			0.003	1.0	
Input Current with Input Voltage Low	IINL	$\mathrm{V}_{\text {IN }}=0$		-1.0	-0.0004		
DYNAMIC							
Turn-ON Time	ton	See Switching Time Test Circuit $V_{S}=2 V, R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$			460	1000	ns
Turn-OFF Time	toff1				360	500	
	toff2				450		
Source OFF-Capacitance	CS (OFF)	$V_{S}=0, V_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			5		pF
Drain OFF-Capacitance	CD (OFF)	$V_{D}=0, V_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			5		
Channel ON-Capacitance	$C_{D}+\mathrm{S}(\mathrm{ON})$	$V_{D}=V_{S}=0, V_{\text {IN }}=0, f=1 \mathrm{MHz}$			16		
OFF-Isolation (Note 4)	OIRR	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF} \\ & V_{S}=1 \mathrm{VRMS}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$			70		dB
Crosstalk (Channel to Channel)	CCRR				90		

Quad SPST CMOS Analog Switches

ELECTRICAL CHARACTERISTICS (DG211) (continued)

($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (For more information on TYP values see Note 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY						
Positive Supply Current	1^{+}	V IN $=0$ and 2.4 V (all)		0.02	0.4	mA
Negative Supply Current	1			0.01	0.4	
Logic Supply Current	IL			0	0	
Power-Supply Range for Continous Operation	VOP		± 4.5		± 18	V

Note 2: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Note 3: $\mathrm{I}(\mathrm{ON})$ is leakage from driver into "ON" switch.
Note 4: OFF-Isolation = $20 \log V_{S} / V_{D}, V_{S}=$ input to $O F F$ switch, $V_{D}=$ output.

ABSOLUTE MAXIMUM RATINGS (DG201A)

Voltages Reference to V -
V+..
44V

GND.
25V
Digital Inputs (Note 1), $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}} \ldots \ldots .-2 \mathrm{~V}$ to $(\mathrm{V}++2 \mathrm{~V})$ or 20 mA , whichever occurs first
Current, Any Terminal Except S or D.............................. 30 mA
Continuous Current, S or D... 20 mA
Peak Current, S or D
(pulsed at $1 \mathrm{~ms} \mathrm{10} \mathrm{\%} \mathrm{duty} \mathrm{cycle} \mathrm{max).........................}$.

Operating Temperature Range

DG201AD/E ... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ DG201AC .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range....................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (Note 2)
16-Pin Plastic Dip (derate $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 842 mW
16 -Pin SO (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW
16-Pin TSSOP (derate $9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 755 mW
(derate $19.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........................... 1538 mW
16-Pin CERDIP (derate $10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $. \ldots . . .800 \mathrm{~mW}$

Note 1: Signals on S_, D_, or IN_ exceeding V^{+}or V^{-}on Maxim's DG201A will be clamped by internal diodes, and are also internally current limited to 25 mA .
Note 2: Device mounted with all leads soldered to PC board.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (DG201A)

($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0, \mathbf{T}_{\mathbf{A}}=\mathbf{+ 2 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted.) (For more information on TYP values see Note 3.)

PARAMETER	SYMBOL	CONDITIONS		DG201AA			DG201AC, D, E			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
SWITCH										
Analog Signal Range	$V_{\text {ANALOG }}$			-15		15	-15		15	V
Drain-Source ON Resistance	RDS (ON)	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{IS}=1 \mathrm{~mA}$			115	175		115	200	Ω
Source OFF-Leakage Current	IS (OFF)	$\mathrm{VIN}=2.4 \mathrm{~V}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.01	1.0		0.01	5.0	nA
			$V_{S}=-14 \mathrm{~V}, V_{D}=14 \mathrm{~V}$	-1.0	-0.02		-5.0	-0.02		
Drain OFF-Leakage Current	ID (OFF)	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.01	1.0		0.01	5.0	
			$V_{S}=-14 \mathrm{~V}, V_{D}=14 \mathrm{~V}$	-1.0	-0.02		-5.0	-0.02		
Drain ON-Leakage Current (Note 4)	ID (ON)	V IN $=0.8 \mathrm{~V}$	$V_{S}=-14 \mathrm{~V}$		0.1	1.0		0.1	1.0	
			$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$	-1.0			-1.0			

Quad SPST CMOS Analog Switches

ELECTRICAL CHARACTERISTICS (DG201A) (continued)

($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0, \mathbf{T}_{\mathbf{A}}=\mathbf{+ 2 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted.) (For more information on TYP values see Note 3.)

Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Note 4: $I_{D}(O N)$ is leakage from driver into "ON" switch.

Quad SPST CMOS Analog Switches

ELECTRICAL CHARACTERISTICS (DG201A)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0, \mathbf{T}_{\mathbf{A}}=\right.$ full opearting temperature range, unless otherwise noted.) (For more information on TYP values see Note 3.)

PARAMETER	SYMBOL	CONDITIONS		DG201AA			DG201AC, D, E			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
SWITCH										
Analog Signal Range	V ANALOG			-15		15	-15		15	V
Drain-Source ON Resistance (Note 5)	RDS (ON)	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{IS}=1 \mathrm{~mA}$				250			250	Ω
Source OFF Leakage Current	IS (OFF)	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$			100			100	nA
			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100			-100			
Drain OFF Leakage Current	ID (OFF)	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$			100			100	
			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100			-100			
Drain ON Leakage Current (Note 6)	ID (ON)	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	$V_{S}=-14 \mathrm{~V}$			200			200	
			$V_{D}=14 \mathrm{~V}$	-200			-200			
INPUT										
Input Current with Input Voltage High	IINH	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-1.0			-1.0			$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$				1.0			1.0	
Input Current with Input Voltage Low	IINL	$\mathrm{V}_{\text {IN }}=0$		-1.0			-1.0			

Note 5: Electrical characteristics, such as ON-Resistance, will change when power supplies other than $\pm 15 \mathrm{~V}$, are used. Note 6: $I_{D}(O N)$ is leakage from driver into "ON" switch.

Pin Description

PIN		NAME	FUNCTION	
DIP/SO/TSSOP	QFN			
$1,16,9,8$	$15,14,7,6$	IN1-IN4	Input	
$2,15,10,7$	$16,13,8,5$	D1-D4	Analog Switch Drain Terminal	
$3,14,11,6$	$1,12,9,4$	S1-S4	Analog Switch Source Terminal	
4	2	V-	Negative-Supply Voltage Input	
5	3	GND	Ground	
12	10	N.C.	No Connection	
13	11	V+	Positive-Supply Voltage Input-Connected to Substrate	

Switching Time Test Circuit

Switch output waveform shown for $V_{S}=$ constant with logic input waveform as shown. Note that V_{S} may be + ve or -ve as per switching times test circuit. Vo is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Quad SPST CMOS Analog Switches

Figure 1. Switching Time
Typical RDS(ON) vs. Power Supplies for Maxim's DG201A, and DG211

POWER SUPPLIES	RDS(ON) AT ANALOG SIGNAL LEVEL					
	$\mathbf{- 5 V}$	$\mathbf{+ 5 V}$	$\mathbf{- 1 0 V}$	$\mathbf{+ 1 0 V}$	$\mathbf{- 1 5 V}$	$\mathbf{+ 1 5 V}$
$\pm 5 \mathrm{~V}$	350Ω	380Ω	-	-	-	-
$\pm 10 \mathrm{~V}$	-	-	165Ω	250Ω	-	-
$\pm 15 \mathrm{~V}$	-	-	125Ω	160Ω	135Ω	155Ω

Protecting Against Fault Conditions

Fault conditions occur when power supplies are turned off when input signals are still present, or when overvoltages occur at the inputs during normal operation. In either case, source-to-body diodes can be forward biased and conduct current from the signal source. If this current is required to be kept to low ($\mu \mathrm{A}$) levels then the addition of external protection diodes is recommended.

To provide protection for overvoltages up to 20 V above the supplies, a 1N4001 or 1N914 type diode should be placed in series with the positive and negative supplies as shown in Figure 2. The addition of these diodes will reduce the analog signal range to 1 V below the positive supply and 1 V above the negative supply.

Figure 2. Protection against Fault Conditions

Quad SPST CMOS Analog Switches

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

$\underline{\text { TOP VIEW }}$

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.053	0.069	1.35	1.75		
A1	0.004	0.010	0.10	0.25		
B	0.014	0.019	0.35	0.49		
C	0.007	0.010	0.19	0.25		
e	0.050		BSC	1.27		BSC
E	0.150	0.157	3.80	4.00		
H	0.228	0.244	5.80	6.20		
L	0.016	0.050	0.40	1.27		

VARIATIONS:

	INCHES		MILLIMETERS				
DIM	MIN	MAX	MIN	MAX	N	MS012	
D	0.189	0.197	4.80	5.00	8	AA	
D	0.337	0.344	8.55	8.75	14	AB	
D	0.386	0.394	9.80	10.00	16	AC	

FRONT VIEW

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, . 150 " SOIC

APPROVAL	DOCUMENT CONTROL NO.	REV.	$1 / 1$

Quad SPST CMOS Analog Switches

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	---	0.180	---	4.572
A1	0.015	---	0.38	---
A2	0.125	0.175	3.18	4.45
A3	0.055	0.080	1.40	2.03
B	0.015	0.022	0.381	0.56
B1	0.045	0.065	1.14	1.65
C	0.008	0.014	0.2	0.355
D1	0.005	0.080	0.13	2.03
E	0.300	0.325	7.62	8.26
E1	0.240	0.310	6.10	7.87
e	0.100	BSC．	2.54	BSC．
eA	0.300	BSC．	7.62	BSC．
eB	0.400	BSC．	10.16	BSC．
L	0.115	0.150	2.921	3.81

	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX	N	
D	0.348	0.390	8.84	9.91	8	
D	0.735	0.765	18.67	19.43	14	A
D	0.745	0.76	18.92	19.4	16	
D	0.885	0.915	22.48	23.24	18	AD
D	1.015	1.045	25.78	26.54	20	
	1.14	1.265	28.96	3213	24	
	1.360	1.380				

NDTES：
1．D\＆E DD NDT INCLUDE MDLD FLASH
2．MDLD FLASH \quad R PROTRUSIDNS NDT
TO EXCEED .15 mm （．006＂）
3．CONTRDLLING DIMENSIUN：MILLIMETER
4．MEETS JEDEC MSOO1－XX AS SHDWN
IN ABDVE TABLE
5．SIMILIAR TI JEDEC MO－058AB
6．$N=$ NUMBER DF PINS

$\triangle N D O Z R D D$ axtum ：mana	PACKAGE FAMILY ZUTLINE：PDIP ．300＂ Tite	$1 / 1 / 21-0043 \mathrm{D}$

Quad SPST CMOS Analog Switches

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	---	0.200	---	5.08
B	0.014	0.023	0.36	0.58
B1	0.038	0.065	0.97	1.65
C	0.008	0.015	0.20	0.38
E	0.220	0.310	5.59	7.87
E1	0.290	0.320	7.37	8.13
e	0.100		2.54	
L	0.125	0.200	3.18	5.08
$L 1$	0.150	---	0.00	---
Q	0.015	0.070	0.38	1.78
S	---	0.098	---	2.49
$S 1$	0.005	---	0.13	---

	INCHES		MILLIMETERS				
	MIN	MAX	MIN	MAX	N	CASE	
D	---	0.405	---	10.29	8	P：D4	
D	---	0.785	---	19.94	14	C：D1	
D	---	0.840	---	21.34	16	E：D2	
D	---	0.960	---	24.38	18	V：D6	
D	---	1.060	---	26.92	20	R：D8	
D	---	1.280	---	32.51	24	L：D9	

NDTES：
1．CONTRGLLING DIMENSIID：INCH
2．MEETS 1835 CASE पUTLINE CDNFIGURATIDN \＃1 AS SHDWN IN ABDVE TABLE
3．$N=$ NUMBER $\square F$ PINS

PACKAGE FAMILY TUTLINE：CDIP ．300＂

$21-0045 \mathrm{~A}$

Quad SPST CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Quad SPST CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Quad SPST CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

